PCB中熱量的來源主要有三個方面:
(1)電子元器件的發熱;
(2)PCB本身的發熱;
(3)其它部分傳來的熱。
在這三個熱源中,元器件的發熱量最大,是主要熱源,其次是PCB板產生的熱,外部傳入的熱量取決于系統的總體熱設計,暫時不做考慮。 那么熱設計的目的是采取適當的措施和方法降低元器件的溫度和PCB板的溫度,使系統在合適的溫度下正常工作??梢詮囊韵聨追矫婵紤]:
1、通過PCB板本身散熱。目前廣泛應用的PCB板材是覆銅/環氧玻璃布基材或酚醛樹脂玻璃布基材,還有少量使用的紙基覆銅板材。這些基材雖然具有優良的電氣性能和加工性能,但散熱性差,作為高發熱元件的散熱途徑,幾乎不能指望由PCB本身樹脂傳導熱量,而是從元件的表面向周圍空氣中散熱。但隨著電子產品已進入到部件小型化、高密度安裝、高發熱化組裝時代,若只靠表面積十分小的元件表面來散熱是非常不夠的。同時由于QFP、BGA等表面安裝元件的大量使用,元器件產生的熱量大量地傳給PCB板,因此,解決散熱的最好方法是提高與發熱元件直接接觸的PCB自身的散熱能力,通過PCB板傳導出去或散發出去。
2、高發熱器件加散熱器、導熱板。當PCB中有少數器件發熱量較大時(少于3個)時,可在發熱器件上加散熱器或導熱管,當溫度還不能降下來時,可采用帶風扇的散熱器,以增強散熱效果。當發熱器件量較多時(多于3個),可采用大的散熱罩(板),它是按PCB板上發熱器件的位置和高低而定制的專用散熱器或是在一個大的平板散熱器上摳出不同的元件高低位置。將散熱罩整體扣在元件面上,與每個元件接觸而散熱。但由于元器件裝焊時高低一致性差,散熱效果并不好。通常在元器件面上加柔軟的熱相變導熱墊來改善散熱效果。
3、采用合理的走線設計實現散熱,由于板材中的樹脂導熱性差,而銅箔線路和孔是熱的良導體,因此提高銅箔剩余率和增加導熱孔是散熱的主要手段。
4、高熱耗散器件在與基板連接時應盡能減少它們之間的熱阻。為了更好地滿足熱特性要求,在電路板??諝饬鲃訒r總是趨向于阻力小的地方流動,所以在印制電路板上配置器件時,要避免在某個區域留有較大的空域。整機中多塊印制電路板的配置也應注意同樣的問題。
5、對溫度比較敏感的器件最好安置在溫度最低的區域(如設備的底部),千萬不要將它放在發熱器件的正上方,多個器件最好是在水平面上交錯布局。
6、避免PCB上熱點的集中,盡可能地將功率均勻地分布在PCB板上,保持PCB表面溫度性能的均勻和一致。往往設計過程中要達到嚴格的均勻分布是較為困難的,但一定要避免功率密度太高的區域,以免出現過熱點影響整個電路的正常工作。